
Clustered Logging
with mod_log_spread

Theo Schlossnagle
<jesus@omniti.com>

The Speaker

open-source developer
mod_backhand
Wackamole
daiquiri
OpenSSH/SecurID
Spread
etc.

closed-source developer
Ecelerity MTA
Ecelerity Clustering

Theo Schlossnagle Pricipal @ OmniTI

Agenda

Understanding the Problem Space

A Survey of Technologies

Implementing Clustered Logging

Understanding New Possibilities

Understanding
the Problem Space

The Purpose of Logging

Journalling the fact that a transaction has taken place.

Correlating a series of transactions into a session.

An audit trail.

Forensics.

Activity analysis to understand current trends and
predict the future.

Basic Expectations

Logs are reliable.

Events are logged in the order they occur.

They can be partitioned by date.

They can be multiplexed and demultiplexed on demand.

Introducing Clustering
Clustering:
several machines acting together
to provide a single service
Sessions may now be
composed of a series
transactions that occur on
different machines.
Ordering is “harder” and
more important.

A Survey of
Technologies

Traditional Logging
Logs written locally on web servers
space must be allocated

Consolidation happens periodically
crashes will result in missing data
aggregators must preserve chronology
real-time metrics cannot be calculated

Monitors must run against log servers
monitors must tail log files
requires resources on the log servers

Traditional Approach

mon2

web1 web2 web3

Realtime TCP/IP or UDP/IP

Web Clients

log2

storage

Traffic Monitor

C lick-stream Logger

log1

storage

Logging in its infancy

Active Network Logging
Logs written directly to log servers
UDP is unreliable and thus not useful
TCP is a point-to-point protocol
Two log server mean double traffic
Add a monitor and that’s triple!

Real-time metrics are possible
monitors must tail log files still
(or publishers must send directly to the
monitors... yuck!)

Network Approach

mon2

web1 web2 web3

Realtime TCP/IP or UDP/IP

Web Clients

log2

storage

Traffic Monitor

C lick-stream Logger

log1

storage

Adolescent Logging

Passive Network Logging
Logs constructed from sniffed traffic
The players no longer matter
Web servers can be added easily

Drops logs!
When tested head-to-head with active
logging frameworks we see loss
Missing logs is unacceptable

Passive Logging

A lapse in judgement

mod_log_spread Logging
Logs are published over Spread
Efficient reliable network multicast
Preserves global ordering of logs

Multiple subscribers at no cost
well... almost zero

Extends well beyond Apache
All logging (enterprise wide) can be utilize this
publish/subscribe messaging bus

mod_log_spread

mon2

web1 web2 web3

Web Clients

log2

storage

Traffic Monitor

C lick-stream Logger

log1

storage Spread Ring

Mature Logging

instant aggregation
ordering
publish/subscribe model
multiple subscribers
multiple subscribers
multiple subscribers...

Clustered Logs Provide

Data “feeds”
Write them to disk
Real-time analysis:
popular pages
concurrent sessions

Who’s online?
Understand load-balanced click streams

Multiple Subscriber Magic

Implementing
Clustered
Logging

So show me!

Spread
Apache 1.3 or 2.0
mod_log_spread
spreadlogd
A spread client API for
your favorite language:
Perl, Python, C
Java, Ruby, PHP,
etc.

http://www.spread.org/

A simple /etc/spread.conf:

DebugFlags = { EXIT CONFIGURATION }

EventLogFile = /var/log/spread/mainlog
EventTimeStamp

Spread_Segment 10.225.209.255:4913 { # order matters
 admin-va-1 10.225.209.68 # staging server
 www-va-1 10.225.209.71
 www-va-2 10.225.209.72
 www-va-3 10.225.209.73
 samwise 10.225.209.240 # logging machines
 gollum 10.225.209.241 # monitoring machine
}

Install Spread

http://www.backhand.org/

A simple httpd.conf:

LoadModule log_spread_module libexec/mod_log_spread.so
AddModule mod_log_spread.c
#AddModule mod_log_config.c
SpreadDaemon 4913

LogFormat "%h %l %u %t \"%r\" %>s %b" common

<VirtualHost coolsiteip:80>
 CustomLog $coolsite common
</VirtualHost>

<VirtualHost slicksiteip:80>
 CustomLog $slicksite common
</VirtualHost>

Install mod_log_spread

; /opt/spread/bin/spuser -s 4913

User: connected to 4913 with private group #user#admin-va-1
User> j coolsite
============================
Received REGULAR membership for group coolsite with 2 members, where I am member 1:
 #user#admin-va-1
grp id is 182571332 1092928408 2
Due to the JOIN of #user#admin-va-1
User>
============================
received RELIABLE message from #ap25454#admin-va-1, of type 1, (endian 0) to 1 groups
(182 bytes): 68.55.183.91 - - [30/Oct/2004:11:48:51 -0400] "GET /~jesus/ HTTP/1.1" 200 57940 "-"
"Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/125.5 (KHTML, like Gecko) Safari/125.9"

Verify it is working

http://www.backhand.org/mod_log_spread/

A simple /etc/spreadlogd.conf:

BufferSize = 65536
Spread {
 Port = 4913
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "coolsite"
 File = /data/logs/apache/coolsite/common_log
 }
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "slicksite"
 File = /data/logs/apache/slicksite/combined_log
 }
}

Install spreadlogd

BufferSize = 65536
PerlLib /opt/spreadlogd/custom
PerlUse mylogger
Spread {
 Port = 4913
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "coolsite"
 PerlLog mylogger::log
 File = /data/logs/apache/coolsite/common_log
 }
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "slicksite"
 File = /data/logs/apache/slicksite/combined_log
 }
}

Spreadlogd:
kung-fu (1)

BufferSize = 65536
PerlLib /opt/spreadlogd/custom
PerlUse mylogger
Spread {
 Port = 4913
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "coolsite"
 PerlLog mylogger::log
 File = /data/logs/apache/coolsite/common_log
 }
 Log {
 RewriteTimestamp = CommonLogFormat
 Group = "slicksite"
 File = /data/logs/apache/slicksite/combined_log
 }
}

package mylogger;

use DBI;
our $dbh;
our $sth;

sub log($$$) {
 my $sender = shift;
 my $group = shift;
 my $message = shift;
 my ($user, $host) = ($sender =~ /#([^#]+)#([^#]+)/);
 chomp($message);

 $dbh ||= DBI->connect("DBI:mysql:database=weblogs", "logger", "",
 { RaiseError => 0 });
 warn "DBI->connect failed." unless($dbh);
 if($dbh) {
 $sth ||= $dbh->prepare(q{INSERT INTO logs (host, group, timestamp, data)
 VALUES(:1,:2,NOW(),:3)});
 $sth->execute($host, $group, $message);
 }
}

Spreadlogd:
kung-fu (2)

Understanding
New Possibilities

Logs are now streaming
in real time
Real-time metrics
per server hit rates (traffic)
per server hits by response code

relative error serving rate
per server document size metrics

detect unexpected bugs do to
anomalous traffic

Track deeper data
user habits
length of visit online

All this happens passively

Advances

Stupid Pet Tricks

Credit Where
Credit’s Due

The John Hopkins University
The Center for Networking and Distributed Systems

OmniTI Computer Consulting

The Authors and Contributors of Spread:
Yair Amir, Michal Miskin-Amir, Jonathan Stanton, Christin Nita-Rotaru,

Theo Schlossnagle, Dan Schoenblum, John Schultz, Ryan Caudy, Ben Laurie,
Daniel Rall, Marc Zyngier

The Authors of mod_log_spread and Tools:
George Schlossnagle, Theo Schlossnagle, Jonathan Stanton, Yair Amir

Questions?

