
/

PostgreSQL
Looking under the hood with Solaris

Presentation / Theo Schlossnagle

PostgreSQL is Awesome

• Fast.

• Extensible.

• Tablespaces.

• Robust data types.

• Partitioning (albeit fake).

• Partial and functional indexes.

• Extremely supportive community.

• Extremely compliant with database standards.

PostgreSQL is Lacking

• No upgrades (AYFKM).

• pg_dump is too intrusive.

• Poor system-level instrumentation.

• Poor methods to determine specific contention.

• It relies on the operating system’s filesystem cache.
(which make PostgreSQL inconsistent across it’s supported OS base)

Enter Solaris

• Solaris is a UNIX from Sun Microsystems.

• How is it different than other UNIX and UNIX-like systems?

• Mostly it isn’t different (hence the term UNIX)

• It does have extremely strong ABI backward compatibility.

• It’s stable and works well on large machines.

• Solaris 10 shakes things up a bit:

• DTrace

• ZFS

• Zones

Solaris / ZFS

• ZFS: Zettaback Filesystem.

• 264 snapshots, 248 files/directory, 264 bytes/filesystem,
278 (256 ZiB) bytes in a pool, 264 devices/pool, 264 pools/system

• Extremely cheap differential backups.

• I have a 5 TB database, I need a backup!

• No rollback in your database? What is this? MySQL?

• No rollback in your filesystem?

• ZFS has snapshots, rollback, clone and promote.

• OMG! Life altering features.

• Caveat: ZFS is slower than alternatives, by about 10% with tuning.

Solaris / Zones

• Zones: Virtual Environments.

• Shared kernel.

• Can share filesystems.

• Segregated processes and privileges.

• No big deal for databases, right?

But Wait!

Solaris / ZFS + Zones = Magic Juju

• ZFS snapshot, clone, delegate to zone, boot and run.

• When done, halt zone, destroy clone.

• We get a point-in-time copy of our entire PostgreSQL database:

• read-write,

• low disk-space requirements,

• NO LOCKS! Welcome back pg_dump, you don’t suck anymore.

• Fast snapshot to usable copy time:

• On our 20 GB database: 1 minute.

• On our 1.2 TB database: 2 minutes.

https://labs.omniti.com/trac/pgsoltools/browser/trunk/pitr_clone/clonedb_startclone.sh

https://labs.omniti.com/trac/pgsoltools/browser/trunk/pitr_clone/clonedb_startclone.sh
https://labs.omniti.com/trac/pgsoltools/browser/trunk/pitr_clone/clonedb_startclone.sh

ZFS: how I saved my soul.

• Database crash. Bad. 1.2 TB of data... busted.
The reason Robert Treat looks a bit older than he should.

• xlogs corrupted. catalog indexes corrupted.

• Fault? PostgreSQL bug? Bad memory? Who knows?

• Trial & error on a 1.2 TB data set can be a cruel experience.

• In real-life, most recovery actions are destructive actions.

• PostgreSQL is no different.

• Rollback to last checkpoint (ZFS), hack postgres code, try, fail, repeat.

Let DTrace open your eyes

• DTrace: Dynamic Tracing

• Allow you to dynamically instrument “stuff” in the system:

• system calls (like strace/truss/ktrace).

• process/scheduler activity (on/off cpu, semaphores, conditions).

• see signals sent and received.

• trace kernel functions, networking.

• watch I/O down to the disk.

• user-space processes, each function... each machine instruction!

• Add probes into apps where it makes sense to you.

Can you see what I see?

• There is EXPLAIN... when that isn’t enough...

• There is EXPLAIN ANALYZE... when that isn’t enough.

• There is DTrace.

; dtrace -q -n ‘
postgresql*:::statement-start
{
 self->query = copyinstr(arg0);
 self->ok=1;
}
io:::start
/self->ok/
{
 @[self->query,
 args[0]->b_flags & B_READ ? "read" : "write",
 args[1]->dev_statname] = sum(args[0]->b_bcount);
}’
dtrace: description 'postgres*:::statement-start' matched 14 probes
^C

select count(1) from c2w_ods.tblusers where zipcode between 10000 and 11000;
 read sd1 16384
select division, sum(amount), avg(amount) from ods.billings where txn_timestamp
between ‘2006-01-01 00:00:00’ and ‘2006-04-01 00:00:00’ group by division;
 read sd2 71647232

OmniTI Labs / pgsoltools

• https://labs.omniti.com/trac/pgsoltools

• Where we stick out PostgreSQL on Solaris goodies...

• like pg_file_stress

 FILENAME/DBOBJECT READS WRITES
 # min avg max # min avg max
alldata1__idx_remove_domain_external 1 12 12 12 398 0 0 0
slowdata1__pg_rewrite 1 12 12 12 0 0 0 0
slowdata1__pg_class_oid_index 1 0 0 0 0 0 0 0
slowdata1__pg_attribute 2 0 0 0 0 0 0 0
alldata1__mv_users 0 0 0 0 4 0 0 0
slowdata1__pg_statistic 1 0 0 0 0 0 0 0
slowdata1__pg_index 1 0 0 0 0 0 0 0
slowdata1__pg_index_indexrelid_index 1 0 0 0 0 0 0 0
alldata1__remove_domain_external 0 0 0 0 502 0 0 0
alldata1__promo_15_tb_full_2 19 0 0 0 11 0 0 0
slowdata1__pg_class_relname_nsp_index 2 0 0 0 0 0 0 0
alldata1__promo_177intaoltest_tb 0 0 0 0 1053 0 0 0
slowdata1__pg_attribute_relid_attnum_index 2 0 0 0 0 0 0 0
alldata1__promo_15_tb_full_2_pk 2 0 0 0 0 0 0 0
alldata1__all_mailable_2 1403 0 0 423 0 0 0 0
alldata1__mv_users_pkey 0 0 0 0 4 0 0 0

https://labs.omniti.com/trac/pgsoltools
https://labs.omniti.com/trac/pgsoltools

/

Thank you for listening.
Looking under PostgreSQL’s hood with Solaris.

Presentation

