
Production

Troubleshooting

Theo Schlossnagle
Principal theo@omniti.com

OmniTI
omniti.com

Ad
va
nc
ed

1

Scalable Internet Architectures
With an estimated one billion users worldwide, the Internet today is nothing less than a
global subculture with immense diversity, incredible size, and wide geographic reach. With a
relatively low barrier to entry, almost anyone can register a domain name today and potentially
provide services to people around the entire world tomorrow. But easy entry to web-based
commerce and services can be a double-edged sword. In such a market, it is typically much
harder to gauge interest in advance, and the negative impact of unexpected customer traffic
can turn out to be devastating for the unprepared.

In Scalable Internet Architectures, renowned software engineer and architect Theo
Schlossnagle outlines the steps and processes organizations can follow to build online
services that can scale well with demand—both quickly and economically. By making
intelligent decisions throughout the evolution of an architecture, scalability can be a matter
of engineering rather than redesign, costly purchasing, or black magic.

Filled with numerous examples, anecdotes, and lessons gleaned from the author’s years
of experience building large-scale Internet services, Scalable Internet Architectures is both
thought-provoking and instructional. Readers are challenged to understand first, before they
start a large project, how what they are building will be used, so that from the beginning
they can design for scalability those parts which need to scale. With the right approach, it
should take no more effort to design and implement a solution that scales than it takes
to build something that will not—and if this is the case, Schlossnagle writes, respect
yourself and build it right.

Schlossnagle

DEVELOPER’S
LIBRARY

$49.99 USA / $61.99 CAN / £35.99 Net UK

Internet/Programming

www.developers-library.com

DEVELOPER’S
LIBRARY

Cover image © Digital Vision/Getty Images

Theo Schlossnagle is a principal at OmniTI Computer Consulting, where he provides
expert consulting services related to scalable Internet architectures, database replication,
and email infrastructure. He is the creator of the Backhand Project and the Ecelerity MTA,
and spends most of his time solving the scalability problems that arise in high performance
and highly distributed systems.

S
calable Internet Architectures

Scalability
Performance
Security

www.omniti.com

Scalable Internet
Architectures

Theo Schlossnagle

!"#$%%&'!()*)+*,'-./,0.,/123455$6#"67$55"8"95:;55:)<,59

Who is this guy?

Principal @ OmniTI

Open Source

mod_backhand, spreadlogd,
OpenSSH+SecurID, Daiquiri,
Wackamole, libjlog, Spread, etc.

Closed Source

Ecelerity and EcCluster

Author

Scalable Internet Architectures

What is “production?”

What is troubleshooting?

Why would we ever
troubleshoot in
production?

Methods and techniques.

Production Troubleshooting

3

Production:
when it matters most

your business depends on it

your livelihood depends on it

others depend on you fixing it

it matters that you fix it and fix it now

4

Troubleshooting:
the @#$%* site is &*$%# down!

It’s 3am

You’re losing money

You’re in charge

You didn’t cause it

You’re responsible

Everyone wants it fixed now!

5

Why would I work in
production?

Choose no life. Choose no career. Choose no family. Choose
a fucking big computer, choose disk arrays the size of
washing machines, modem racks, CD-ROM writers, and
electrical coffee makers. Choose no sleep, high caffeine and
mental insurance. Choose no friends. Choose black jeans and
matching combat boots. Choose chairs for your office in a
range of fucking fabrics. Choose SMTP and wondering why
the fuck you are logged on on a Sunday morning. Choose
sitting in that swivel chair looking at mind-numbing, spirit-
crushing web sites, stuffing fucking junk food into your
mouth. Choose rotting away at the end of it all, pishing your
last in some miserable newsgroup, nothing more than an
embarrassment to the selfish, fucked up lusers Gates spawned
to replace the computer-literate.
Choose your future.
Choose to sysadmin.

Because

it’s

broken

Jonathan H N Chin
Gary Barnes 6

The Scope

The scope doesn’t get
larger.

Absolutely anything could
be causing the problem.

It doesn’t matter if the
cause is something for
which you are directly
responsible.

7

The rules of engagement

There must be process.

Diagnosis has weak process.

Resolution has strong process.

8

!戦!戦

"断

Diagnosis

If there was a strong process,
there would be a plan for avoidance.

Requires good puzzle-solving skills.

Requires multi-dimensional
attack strategies.

You must be smart.

You must think about
every part of your
architecture.

95% art, 5% science.

9

"断

#$#$

Resolution

Here’s where science re-enters:

5% art, 95% science

The solution must be:

understood

accurate

stable

localized

10

Glossary

Problem: the specific, unambiguous issue.

Solution: the exact process of fixing the problem.

Victim: the entity experiencing the problem.

Witness: the ability to see the problem.

Offender: the entity causing the problem.

11

Methods & Techniques
some simple rules

System tools are good.

Don’t lose sight of the problem.

Let the problem drive your diagnosis.

When it doubt, use brute force.
12

Instrumenting applications
(after the fact)

is a good way to waste
precious time.

I started as an SA.
I like SA tools.

Most problems can be identified on
a systemic level.

I don’t want to muck with
code to find a problem.

I like passive analysis tools:
network packet dumpers: tcpdump/
ethereal

system call tracers: strace/ktrace/
truss

dynamic tracers: Dtrace

Things I can remember during a crisis

13

Before we embark. Protect.

Troubleshooting
sometimes involves
hacking.

Changes to production
code or configuration are
always dangerous.

Not understanding the
changes afterwards is
simply irresponsible.

14

Do it yourself

Keep track of changes you make

Understand what is running
in production:

now

yesterday

last week

15

Let something else track it.

Don’t leave room for human error.

On a big central server:

; mkdir /data/backups
; svnadmin create --fs-type fsfs /data/projects/svn/systems
; cd /data/backups
; curl -O http://www.omniti.com/~jesus/projects/autorev.pl
; vi sysconflist
 [add your hosts here]
 [add /data/backups/autorev.pl to cron]

16

autorev.pl

sample sysconflist

[crank-va-1 10.225.209.34]
rsync etc/ etc/ --exclude=cups --exclude=mail/statistics --exclude=ntp/drift
rsync opt/ opt/ --exclude=oracle --exclude=status.txt --exclude=openldap-data
rsync local/ usr/local/

[admin-va-1 10.225.209.68]
rsync etc/ etc/ --exclude=cups --exclude=mail/statistics --exclude=ntp/drift
rsync opt/apache/conf/ opt/apache/conf/

[www-va-1 10.225.209.71]
rsync etc/ etc/ --exclude=cups --exclude=mail/statistics --exclude=ntp/drift
rsync opt/apache/ opt/apache/
rsync var/apache/ var/apache/

17

What does autorev buy us?

Everything we care about is in revision
control.

It is automatically versioned;
no human error.

If we have a host that
TFTPs hardware configs:

We have change
history on our
routers, switches,
firewalls, etc.

18

Yes. This is cool.

We can watch our production architecture
change.

vital binaries (web server, database, etc.)

configs (host, app, appliance)

custom application

We can rollback to a
known “live” state.

Integrate with Trac
and get an RSS
feed of changes.

19

A simple first example.

Web application hangs

Speedy sometimes.

15-60 second pages loads other times

20

MySQL

www-0-1
www-0-2
www-0-3
www-0-4

www-0-5
www-0-6
www-0-7
www-0-8

Architecture

21

Router

MySQL

www-0-1
www-0-2

www-0-3
www-0-4

www-0-5
www-0-6

www-0-7
www-0-8

GigE switch

GigE switch

Networking

Architecture

22

Router

MySQL

www-0-1
www-0-2

www-0-3
www-0-4

www-0-5
www-0-6

www-0-7
www-0-8

GigE switch

GigE switch

Cisco CS150 Cisco CS150

GigE switch

Architecture

load
balancing

Networking

23

Where to start looking?
This should be influenced by the tools you know best.

It’s all about speed.

I like to repeat the problem first.
Do what the victim does -- become the victim.

Tight, simple, repeatable tests are best.

Lose your pride
Don’t assume your stuff works.

Don’t assume “Bob’s” stuff is broken.

Don’t assume anything.

A Beginning

24

Where to start...

Repeat the problem:

manual browser use

even better... a script

The logical place to start:

where the victim touches the architecture

where you can most easily witness the problem.

25

Architecture

Router

MySQL

www-0-1
www-0-2

www-0-3
www-0-4

www-0-5
www-0-6

www-0-7
www-0-8

GigE switch

GigE switch

Cisco CS150 Cisco CS150

GigE switch Sweet Spot

26

Don’t assume anything.

www-0-1 www-0-2 www-0-3 www-0-4

www-0-5 www-0-6 www-0-7 www-0-8

There is clearly something wrong with www-0-2

Which web server?

27

Approach 1: system tracing

; ps auxww | grep httpd
nobody 417 0.0 0.0 26904 344 ? S 2005 149:34 /opt/apache_1.3.33/bin/httpd -DSSL
root 416 0.0 0.0 26952 120 ? S 2005 5:53 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 19436 0.0 0.5 33212 6136 ? S 16:40 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 20416 0.0 0.6 33292 6540 ? S 17:30 0:01 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 20494 0.0 0.5 32572 5512 ? S 17:34 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 20500 0.0 0.6 33312 6616 ? S 17:35 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 20501 0.0 0.6 33224 6304 ? S 17:35 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 23718 0.0 0.6 33068 6592 ? S 20:23 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 23729 0.0 0.2 29396 2468 ? S 20:24 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 24646 0.0 0.7 32832 7792 ? S 21:13 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 25407 0.0 0.3 29368 3800 ? S 21:54 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 25735 0.0 0.3 29260 3424 ? S 22:11 0:00 /opt/apache_1.3.33/bin/httpd -DSSL
nobody 26062 0.0 0.4 29356 4596 ? S 22:29 0:00 /opt/apache_1.3.33/bin/httpd -DSSL

Which process?
Hopefully they all exhibit signs of the problem.

28

Approach 1: system tracing

; strace -p 20500
semop(4292610, 0x80fa734, 1) = 0
select(18, [16 17], NULL, NULL, NULL) = 1 (in [17])
accept(17, {sa_family=AF_INET, sin_port=htons(64868),
 sin_addr=inet_addr("66.249.65.15")}, [16]) = 4
semop(4292610, 0x80fa73a, 1) = 0
rt_sigaction(SIGUSR1, {SIG_IGN}, {0x80b923d, [],
 SA_RESTORER|SA_INTERRUPT, 0x401c47c8}, 8) = 0
fcntl64(4, F_SETFD, FD_CLOEXEC) = 0
getsockname(4, {sa_family=AF_INET, sin_port=htons(8012),
 sin_addr=inet_addr("192.168.209.71")}, [16]) = 0
setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0
read(4, "GET /IM/storedetail.html?store=B"..., 4096) = 258
rt_sigaction(SIGUSR1, {SIG_IGN}, {SIG_IGN}, 8) = 0
time(NULL) = 1149010483
gettimeofday({1149010483, 613252}, NULL) = 0
... lots and lots of output ...
read(4, "", 4096) = 0
time(NULL) = 1149011137
close(4) = 0
rt_sigaction(SIGUSR1, {0x80b923d, [], SA_RESTORER|SA_INTERRUPT, 0x401c47c8},
 {0x80b923d, [], SA_RESTORER|SA_INTERRUPT, 0x401c47c8}, 8) = 0
semop(4325378, 0x80fa734, 1

Brief lull

15 second lull

29

Approach 1: system tracing

; lsof -p 20500
...
httpd 22282 nobody 4u IPv4 517989990 TCP 66.249.65.15:47451->www-va-1:http (ESTABLISHED)
...
httpd 22282 nobody 17u IPv4 497473156 TCP *:80 (LISTEN)
...

30

File descriptor 4 is the connection to our client.

And we are stuck reading from it.

And we read nothing and then return to servicing others.

Guessing the problem

Revisiting the “evil” lull:

It is exactly 15 seconds. Every time.

This can be confirmed with strace -ttt

What is so special about 15 seconds?

Our application?

Apache?

libc?

kernel?

My guess: Apache

Apache talks directly to the client and issued
the “read” system call on which we are stuck.

; cd ~/src/apache_1.3.33/
; grep '#define.* 15$' `find . -name *.h`
./src/include/httpd.h:#define DEFAULT_KEEPALIVE_TIMEOUT 15
./src/include/httpd.h:#define M_INVALID 15
./src/lib/expat-lite/xmltok.h:#define XML_TOK_PROLOG_S 15
./src/modules/standard/mod_rewrite.h:#define MAX_ENV_FLAGS 15

DEFAULT_KEEPALIVE_TIMEOUT 15

Recap

Keep-alives were our problem:

Apache children were tied up waiting.

A limited number of children.

When all children are used:

We have to wait until a child is free.

Up to 15 seconds.

Much much longer if a back queue exists.

This could have gone differently.

34

 212844
select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)
write(4, "0\r\n\r\n", 5) = 5
time([1150834256]) = 1150834256
gettimeofday({1150834256, 300626}, NULL) = 0
times({tms_utime=29, tms_stime=7, tms_cutime=0, tms_cstime=0}) = -448735555
shutdown(4, 1 /* send */) = 0
select(5, [4], NULL, NULL, {0, 0}) = 1 (NULL, left {0, 0})
read(4, "", 512) = 0
close(4) = 0
...

Approach 1a: system tracing

; strace -p 20500
semop(4292610, 0x80fa734, 1) = 0
select(18, [16 17], NULL, NULL, NULL) = 1 (in [17])
accept(17, {sa_family=AF_INET, sin_port=htons(64868),
 sin_addr=inet_addr("66.249.65.15")}, [16]) = 4
semop(4292610, 0x80fa73a, 1) = 0
... lots and lots of output ...
time(NULL) = 1150834255
write(4, "HTTP/1.1 200 OK\r\nDate: Tue, 20 J"..., 195) = 195
select(8, [4], NULL, NULL, {0, 0}) = 0 (Timeout)
gettimeofday({1150834255, 873521}, NULL) = 0
writev(4, [{"554c\r\n", 6},
 {"\n@import \'/c/styles..., 212836},
 {"\r\n", 2}], 3) =

Brief lull

3 second lull

35

What’s up here?!

Sending data to client gets “stuck”

writev() sticking is due to kernel buffers filling up.

make the buffers bigger

Kernel buffer enlargement

SendBufferSize in Apache

install a web accelerator.

Looking inward.

We’ve looked outward (toward clients)

it has been quick and painless

the same technique can
work for inward problems

at least some of them

37

) = 0
select(18, [16 17], NULL, NULL, NULL) = 1 (in [17])
accept(17, {sa_family=AF_INET, sin_port=htons(64868),
 sin_addr=inet_addr("66.249.65.15")}, [16]) = 4
semop(4292610, 0x80fa73a, 1) = 0
... lots and lots of output ...
gettimeofday({1151148309, 837141}, NULL) = 0
time(NULL) = 1150834255
write(7, "\0\223\0\0\6\0"..., 147) = 147
read(7, "\0\374\0\0\6\0\0"..., 2064) = 252
gettimeofday({1151148309, 837882}, NULL) = 0
...

(same old) system tracing

; strace -p 20500
semop(4292610, 0x80fa734, 1 Brief lull

< 1 second lull

38

(same old) system tracing

; lsof -p 20500
...
httpd 22282 nobody 4u IPv4 517989990 TCP 66.249.65.15:47451->www-va-1:http (ESTABLISHED)
...
httpd 22282 nobody 7u IPv4 517989990 TCP www-va-1.int:47451->dbhost:5432 (ESTABLISHED)
...
httpd 22282 nobody 17u IPv4 497473156 TCP *:80 (LISTEN)
...

File descriptor 7 is the connection to our database.

And we are stuck reading from it.

Hmm... that’s a query, with a slow(ish) response.

39

Not where we want to be

Did we successfully locate the problem?

No...

We know it behind the web application.

Not necessarily behind the web server.

40

The inward problem space

The outward problem space

An over-simplified web transaction

Perspective from analysis on a web server

client
machine

web server
machine

database
server machine

Disk

web
browser

httpd
daemon

database
(postgres)

41

Jumping to the next step

In the outward case,
jumping outside (to the client) is not an option.

Jumping to a load balancer, switch or router is.

The tools there are not so good.

Best to stay on the web server.

In the inward case,
jumping inside (to the database) is an option.

The web server is delayed reading from the DB

Confirm the DB is indeed working.

42

Looking at the system (database)

What’s wrong with the system?

Rephrased: what looks wrong?

Wrong and right are relative with respect to
system returning correct results.

What looks “different” is a better question.

That requires a basis of comparison.

43

Looking at processes (database)

So, what’s running?

Clearly, a database.

The site works (albeit slow),
so the database as functioning correctly.

It’s not performing well.

Which queries are running slow and why?

Don’t assuming anything.

44

Database: on top

load averages: 24.89, 20.66, 20.66 15:01:14
116 processes: 109 sleeping, 3 zombie, 4 on cpu
CPU states: 0.9% idle, 26.0% user, 8.1% kernel, 64.0% iowait, 0.0% swap
Memory: 16G real, 13G free, 1984M swap in use, 42G swap free

 PID USERNAME LWP PRI NICE SIZE RES STATE TIME CPU COMMAND
 20768 jesus 1 49 0 1564K 1176K cpu/1 0:00 23.03% sirtoppemhat
 20508 postgres 1 21 0 0K 0K cpu/2 2:03 0.60% postgres
 18562 postgres 1 48 0 0K 0K sleep 1:16 0.75% postgres
 8240 postgres 1 59 0 0K 0K sleep 54:33 0.10% postgres
 7544 postgres 1 54 0 0K 0K sleep 12:12 0.10% postgres
 4532 postgres 1 33 0 0K 0K sleep 13:09 0.10% postgres
 5672 postgres 1 35 0 0K 0K sleep 9:56 0.10% postgres
 23467 postgres 1 33 0 0K 0K sleep 2:01 0.10% postgres
 11232 postgres 1 50 0 0K 0K sleep 1:27 0.10% postgres
 11332 postgres 1 40 0 0K 0K sleep 15:14 0.10% postgres
 12546 postgres 1 38 0 0K 0K sleep 16:37 0.10% postgres
 7656 postgres 1 35 0 0K 0K sleep 7:08 0.10% postgres
 2384 postgres 1 35 0 0K 0K sleep 8:41 0.10% postgres
 8240 postgres 1 41 0 0K 0K sleep 8:17 0.10% postgres
 3324 postgres 1 49 0 0K 0K sleep 12:20 0.10% postgres
 1912 postgres 1 47 0 0K 0K sleep 7:38 0.00% postgres
 8241 postgres 1 51 0 0K 0K sleep 2:25 0.00% postgres
 1312 root 26 59 0 3968K 3088K sleep 2:16 0.00% nscd

45

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP
 21755 postgres 37 0.9 0.1 0.0 0.0 0.0 58 3.6 1K 1K 1K 0 postgres/1
 8241 postgres 0.5 1.3 0.0 0.0 0.0 0.0 97 1.5 2K 240 14K 0 postgres/1
 8242 postgres 0.7 1.1 0.0 0.0 0.0 0.0 97 1.3 2K 87 12K 0 postgres/1
 21821 postgres 0.4 0.4 0.0 0.0 0.0 0.0 99 0.1 134 80 620 0 postgres/1
 21825 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 125 80 573 0 postgres/1
 21805 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 132 55 600 0 postgres/1
 21857 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 124 68 552 0 postgres/1
 21829 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 129 62 625 0 postgres/1
 21801 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 126 93 574 0 postgres/1
 21841 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 113 75 513 0 postgres/1
 21797 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.2 114 53 503 0 postgres/1
 21837 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.2 111 63 510 0 postgres/1
 21809 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 126 21 538 0 postgres/1
 21833 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.1 118 47 521 0 postgres/1
 21853 postgres 0.3 0.3 0.0 0.0 0.0 0.0 99 0.2 110 71 464 0 postgres/1
 21849 postgres 0.2 0.3 0.0 0.0 0.0 0.0 99 0.1 102 53 430 0 postgres/1
 21845 postgres 0.2 0.3 0.0 0.0 0.0 0.0 99 0.1 99 64 421 0 postgres/1
 NPROC USERNAME SIZE RSS MEMORY TIME CPU
 29 postgres 18G 17G 97% 1:07:25 13%
 1 nobody 9720K 8400K 0.0% 0:33:53 0.0%
 37 root 132M 77M 0.4% 0:19:37 0.0%
 4 daemon 10M 6052K 0.0% 0:03:49 0.0%

Total: 116 processes, 489 lwps, load averages: 24.16, 20.16, 20.73

Database: on prstat

46

 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 80.0 233.0 0.0 49627.6 0.0 46.8 0.2 201.0 5 100 c3t6000393000016A06d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d2
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d1
 410.0 68.0 0.0 56406.0 0.0 26.1 0.3 383.9 2 100 c3t6000393000016A06d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d2
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d1
 490.0 48.0 0.0 41290.5 0.0 30.0 0.4 624.1 2 100 c3t6000393000016A06d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d2
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d1
 521.0 42.0 0.0 38846.0 0.0 30.7 0.3 730.4 1 100 c3t6000393000016A06d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d2
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d1
 110.0 136.0 0.0 44998.6 0.0 33.0 0.2 242.7 3 100 c3t6000393000016A06d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d2
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d1
 400.0 64.0 8.0 38333.4 0.0 30.9 0.2 475.8 2 100 c3t6000393000016A06d0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c3t6000393000016A06d2
 0.0 2.0 0.0 1.5 0.0 0.1 0.1 50.3 0 10 c3t6000393000016A06d1

Database: on iostat

@#$%! Those are some high service times!

47

So, we know the situation is bad

Knowing the situation is bad is good.

We already knew that.

We have made progress, we know disk service
latency on the database is a likely cause.

Which queries are running slowly?

This is a bad question.
We know the database is slow due to slowed disk access.
But, we don’t know that the database is the cause.

48

Which is the offending process?

It is pretty hard to tell this on Linux.

my technique usually involvess peeking at top

taking a guess

stracing

repeat.

49

How can we be more efficient?

My database server runs Solaris 10

I have DTrace

I do not suffer from inadequacies.

Next step... world domination.

50

; dtrace -n ‘io:::start { @[pid,execname] = sum(args[0]->b_bcount); }’
dtrace: description 'io:::start ' matched 6 probes
^C

 3896 postgres 352256
 3876 postgres 393216
 3884 postgres 393216
 3868 postgres 413696
 3880 postgres 413696
 3872 postgres 425984
 3864 postgres 438272
 3860 postgres 524288
 3848 postgres 544768
 3856 postgres 569344
 3852 postgres 573440
 3844 postgres 589824
 3836 postgres 716800
 3840 postgres 724992
 3832 postgres 851968
 3 fsflush 861696
 3828 postgres 872448
 4589 tar 75634228

Database: on DTrace

51

This could have gone differently.

52

; dtrace -n ‘io:::start { @[pid,execname] = sum(args[0]->b_bcount); }’
dtrace: description 'io:::start ' matched 6 probes
^C

 3896 postgres 352256
 3876 postgres 393216
 3884 postgres 393216
 3868 postgres 413696
 3880 postgres 413696
 3872 postgres 425984
 3864 postgres 438272
 3860 postgres 524288
 3848 postgres 544768
 3856 postgres 569344
 3852 postgres 573440
 3844 postgres 589824
 3836 postgres 716800
 3840 postgres 724992
 3832 postgres 851968
 3 fsflush 861696
 3828 postgres 4372448
 3823 postgres 6534428
 4589 postgres 12634228

Database: on DTrace

53

; echo “SELECT now() - query_start as duration, current_query
 FROM pg_stat_activity
 WHERE procpid = 4589” | psql pgods

 duration | current_query
-----------------+--
 00:01:23.345221 | UPDATE users SET emailaddress = lower(emailaddress);

Database: the Offender

54

It should be rather obvious now.

Someone issued an enormous update.

It is inducing enormous disk I/O

Slowing everything else in the system.

Why DTrace is so cool.

We can now see things never before possible:; dtrace -q -n ‘
postgres*:::report-activity
{
 self->query = copyinstr(arg0);
 self->ok=1;
}
io:::start
/self->ok/
{
 @[self->query,
 args[0]->b_flags & B_READ ? "read" : "write",
 args[1]->dev_statname] = sum(args[0]->b_bcount);
}’
dtrace: description 'postgres*:::report-activity' matched 14 probes
^C

select count(1) from c2w_ods.tblusers where zipcode between 10000 and 11000;
 read sd1 16384
select division, sum(amount), avg(amount) from ods.billings where txn_timestamp
between ‘2006-01-01 00:00:00’ and ‘2006-04-01 00:00:00’ group by division;
 read sd2 71647232

The Importance of Historical Data

Trend Analysis.

Provides a control for experiments.

Provides a foundation for conjectures.

At a bare minimum

bandwidth

load

disk I/O and service times

memory usage

Anecdotes

Questions?

Credits

OmniTI, Inc. - best place to work ever.

Sun and the DTrace team.

My wife and children.

